行人檢測作為計算機視覺領域最基本的主題之一,多年來被廣泛研究。盡管最先進的行人檢測器已在無遮擋行人上取得了超過 90% 的準確率,但在嚴重遮擋行人檢測上依然無法達到滿意的效果。究其根源,主要存在以下兩個難點:
嚴重遮擋的行人框大部分為背景,檢測器難以將其與背景類別區分;
給定一個遮擋行人框,檢測器無法得到可見區域的信息;
Tube Feature Aggregation Network(TFAN)新方法,即利用時序信息來輔助當前幀的遮擋行人檢測,目前該方法已在 Caltech 和 NightOwls 兩個數據集取得了業界領先的準確率。
核心思路
利用時序信息輔助當前幀遮擋行人檢測
目前大部分行人檢測工作都集中于靜態圖像檢測,但在實際車路環境中大部分目標都處于運動狀態。針對嚴重遮擋行人的復雜場景,單幀圖像難以提供足夠有效的信息。為了優化遮擋場景下行人的識別,地平線團隊提出通過相鄰幀尋找無遮擋或少遮擋目標,對當前圖像中的遮擋行人識別進行輔助檢測。
實驗新方法
Proposal tube 解決嚴重遮擋行人檢測
如下圖,給定一個視頻序列,首先對每幀圖像提取特征并使用 RPN(Region Proposal Network)網絡生成 proposal 框。從當前幀的某個 proposal 框出發,依次在相鄰幀的空間鄰域內尋找最相似的proposal框并連接成 proposal tube。
機器人招商 Disinfection Robot 機器人公司 機器人應用 智能醫療 物聯網 機器人排名 機器人企業 機器人政策 教育機器人 迎賓機器人 機器人開發 獨角獸 消毒機器人品牌 消毒機器人 合理用藥 地圖 |